Catherine DeRose

Michael Seaholm

CS 838 Sect. 1

Project 2

5-11-2012

Design Report


Our visualization is meant to act as a map of locations that were mentioned in novels throughout the 19th century. It was implemented using the d3 and Polymaps JavaScript libraries and was adapted from an example given by Michael Bostock, the developer behind d3. The combination of the two provided both a straightfoward representation for the locations and a flexibile means to implement additional functionality.


The user is first presented with a map of the world with locations plotted on its surface as a series of circles. These circles are colored to indicate relative frequency of mention, with whiter circles referring to places not often mentioned and redder circles indicating very frequently mentioned. By hovering the mouse over these points, the user can see the name of the location that each circle represents. Left-clicking on the points preserves the label so that it persists beyond the mouse hover event, and left-clicking again removes this preservation property. As well, points can be removed from the visualization by right-clicking on them, which allows for on-the-fly correction for known erroneous points. The mouse is also used to navigate throughout the map in an intuitive fashion, allowing panning and zooming by dragging the screen and scrolling the mouse wheel, respectively.


Our visualization also features a number of functions to navigate through the data. There is a series of checkboxes beneath the visualization which correspond to common genre specifications for 19th century novels. By clicking on the checkboxes and then selecting the Filter button, users can show only those locations which are referenced by novels of those genres. Hovering the cursor over the points displays the list of genres associated with the given location in a small area beneath these checkboxes, which can be used to drill down into that information further. At any time, the points displayed on the screen can be preserved for later sessions by clicking the Save button, and the original state of the visualization can be restored accordingly by pressing the Restore button.


The process of creating our visualization can be roughly divided into two phases: data acquisition/refinement and, as we have covered previously, implementation. Owing to the nature of our data, which came directly from digitally composed texts, the better part of our work went into this first phase. For the most part, this involved getting the location names from the text, performing some rough heuristics to determine their legitimacy, geocoding the filtered locations and putting all the relevant data into a text format that the visualization would understand. The implementation then plots these points and associates additional information, such as frequency and genre, with each. The user is then free to filter, save, or restore this set of locations as specified above.


The first step was to take the digital texts and determine location information from them. Toward this end, we ran the texts through a freely-available named entity recognition (NER) system provided by Stanford University, which tagged suspected locations accordingly. These tagged texts were the basis for the series of bash scripts that served to mould the file from which our visualization draws its data.


The details regarding which scripts perform which specific functions are provided in the readme file that was submitted alongside our other deliverables, but the general algorithm will be described in brief. First, each tagged text is individually processed in an initial stage, where the tagged locations are stripped out and labeled by frequency and genre. From there, we employ a heuristic meant to weed out entries which the NER system erroneously tagged as locations. Assuming that many of these false entries are “one-off” instances that are not consistently tagged incorrectly, their frequencies relative to those of legitimate entries should be much less. On this basis, we calculate the average location frequency for each novel and filter out locations whose frequencies fall below this threshold.


Once a list of filtered locations has been compiled for each novel, the information is read by a small C++ program which aggregates frequencies and genres for all locations across lists into one unified file. From there, a separate script uses Google's geocoding utility to associate latitude and longitude information with each location and output the final result as a JSON file. Once the file has been manually verified to be well-formed in syntax, it can be put in the same server directory as the web page containing our visualization, which uses it after that.


Throughout this process, we have made modifications to both the way that data is collected and to the contents of the data itself in order to account for error. Besides the average frequency threshold filtering mentioned previously, we added a provision to the geocoding script that handles certain situations when the geocoder returns multiple possible coordinates for an input location. This provision says that if, for a given location name, the first matching set of coordinates is in the United States but there exists another matching set which is in the United Kingdom, the algorithm should choose the coordinates associated with the United Kingdom location. We chose to add this because in our initial testing we noticed that a large number of points in the United States were supposed to be in the United Kingdom, well in excess of the general error rate elsewhere on the map.


Once we finished processing and displaying our initial set of locations, the list of possibilities was sufficiently reduced to allow us to manually confirm point-by-point accuracy and pare down the list further as necessary. The same process was repeated in working with our final data set, a collection of fifty-five texts from throughout the 19th century. From the original 500 locations produced by our data aggregation mechanism, about 250, or half, were found to be legitimate. These erroneous locations primarily came about from one of two different sources. First, the geocoder would often not return a list of relevant results for a given search term if it was not specific enough. The locations lifted from the texts were often only one or two word place names which might not be distinguished enough for the geocoder to properly handle.


Second, terms which were consistently tagged improperly by the NER system made it through the filtering process and were subsequently plotted. Most of these mistagged entries were character names owing to their persistent use throughout a given text. We attempted to resolve this issue by culling terms which were tagged as both location names and character names, but it turned out that, since the NER system tended to mistag characters along the same lines, this automated approach would often get rid of more legitimate points than was desired. As such, it was not included in our final data acquisition scheme.


Besides these points, we also decided to look at locations which were filtered out by our averaging scheme, since some of the points became significant when aggregated across text. We took all those points which had an aggregate frequency greater than 10 and added these to our final data set, giving us a total of roughly 270 locations. Thanks to the paring down of data during the acquisition phase, we were able to significantly reduce the amount of error in the system as well as facilitate manual verification of points, which would otherwise have become prohibitively time-intensive. As such, we have been able to confirm that the points displayed on the map are virtually error-free in this regard.

