
Michael Seaholm
12-19-2012

CS 760 Section 1
Project Report

A Comparison of Learning Methods for Spam Classification

Abstract: Given its adaptive and pervasive nature, spam is often classified by means of
machine learning techniques, which have the ability to finely discern the difference between
spam and legitimate messages in an automated fashion. Popular applications for spam
classification typically incorporate some sort of Bayesian mechanism in order to classify spam;
however, there is no reason to think that other classification methods cannot be used for the same
purpose. For this project we implemented three spam classifiers following different learning
approaches and evaluated them with regards to a sample spam classification task. We then
discuss our interpretation of the results with regards to the decision boundary and learning model
involved with each classifier as well as how each classifier holds up against adaptations in spam
over time.

1. Introduction

Anyone with an e-mail address is probably well aware of the presence of junk e-mail, or
spam, and its impact on Internet users everywhere. Over 90 trillion spam e-mails are thought to
have circulated in 2010 [1], and the figures for the years to come are unlikely to be any less
staggering. However, most end-users do not have to deal firsthand with the majority of this spam
owing to the intervention of filtering programs which separate spam from legitimate mail, also
called ham. Such spam filters or classifiers are integral to keeping users' e-mail accounts from
becoming overburdened with spam, thereby preventing spam from becoming an active
impediment to general e-mail access as opposed to a comparatively minor nuisance.

Many spam classifiers use Bayesian statistics in order to make inferences regarding the
class of incoming e-mails. In particular, the program SpamAssassin, which is maintained by
Apache Software Foundation and sees widespread public and private use, includes a naïve Bayes
classifier at its core which adapts with incoming spam over time [2]. Although naïve Bayes
approaches are especially prevalent as an option for spam filtering, it is reasonable to think that
other machine learning techniques could be applied to the task of spam classification. Toward
that end, we implemented three spam classifiers - one each for the naïve Bayes, logistic
regression, and multilayer neural network paradigms - and made an evaluative comparison
between each given the task of classifying spam from a selected data set.

The rationale behind this particular choice of classifiers is as follows. Because of its
general utility in performing this task, naïve Bayes is a natural choice for one of the classifiers,
as it serves as a baseline by which the other classifiers can be evaluated. The selection of logistic
regression as one of the implementations stems from the equivalence in functional form shared
between this approach and naïve Bayes [3]; more specifically, it allows for a direct comparison
between generative and discriminative learning models as applied to the spam classification task.
It should be noted that both of these approaches separate instances using a linear decision
boundary in the feature space [3]. This is why a multilayer neural network was also implemented
for this task, as its ability to learn non-linear boundaries [4] may provide insight into the problem
of classifying spam.

Going into this project, we sought to address a few questions motivated by our choice of
classifiers and the task of spam classification. First, how does performance in spam classification
vary between discriminative and generative approaches? Similarly, how is performance affected

Seaholm 2

by the form of the decision boundary in the feature space - linear or non-linear - that the
classifier is able to learn? The extent to which performance is influenced by each of these factors
is explored more fully during the evaluation phase of the project, in which we consider not only
basic differences in accuracy over the sample data set but also a measure of how well each
classifier adapts to more recent ham and spam messages after having trained on older instances.

2. Approach
2.1. The Classifiers

As stated previously, this project dealt with the implementation of three spam classifiers:
a naïve Bayes network, a logistic regressor, and a multilayer neural network. Each was
implemented in such a way as to ensure that no one classifier had an a priori advantage over the
others during the evaluation phase; that is, the basic principles for each approach were used in
building each classifier while avoiding any classifier-specific optimizations which might
significantly increase accuracy over the chosen data set. Certain design decisions were made on a
per-classifier basis during the implementation phase, which are enumerated in the description for
each classifier below.

The naïve Bayes classifier consists of a naïve Bayes network in which the primary parent
node represents the class label for a given instance and whose child nodes represent the relevant
features. The network is trained by using inference by enumeration over a training set and the
resulting probability estimates are smoothed using Laplacian pseudocounts [5]. Instances from
the test set are subsequently classified by finding the probability of the class label given the
features using Bayes' rule to make the computation feasible [5]. This follows from the standard
form of a naïve Bayes classifier, and for our purposes no further additions were required.

In contrast to the naïve Bayes network, the logistic regression classifier takes the form of
a series of input units connected by weighted edges to a sigmoid output, in essentially the same
layout as a perceptron. The weights for the logistic regressor are trained by means of gradient
ascent to maximize the sum of log probabilities for the class label given the features [6]. In this
implementation, the regressor uses stochastic gradient ascent in order to promote faster
convergence, which was not deemed to affect accuracy unfairly but rather increase efficiency to
facilitate testing. Output from the regressor is calculated by taking the sigmoid function applied
to the sum of products of weights and input values for each instance [6]. This constitutes the
logistic regression classifier that was created for this project, serving as the discriminative
counterpart to naïve Bayes.

The multilayer neural network classifier is similar in form to the logistic regressor
previously described, although more complex in operation. An additional layer of hidden units
was put between the input and output units which would normally be present in a simple
perceptron. Each input unit is fully connected to the units in this intermediate hidden layer, and
each hidden unit points to a single sigmoid output. The number of hidden units selected for this
task is roughly half of the sum of the number of input and output units, as per the
recommendation of various sources [7] [8]. Training for this network involves updating the
weights between the various units using backpropagation, and more specifically with stochastic
gradient descent to minimize the sum squared error of the network output [4]. In contrast to the
other two classifiers, this neural network is capable of learning a non-linear decision boundary,
which may have a noticeable impact during evaluation.

Seaholm 3

2.2. The Data Set

Because the data set used in the evaluation phase was essentially "home grown", much of
the initial effort for this project was centered around retrieving the necessary data and converting
it into a useful format for use by the classifiers. The original data set consisted of one thousand e-
mails from the author's workplace inbox, chosen randomly and divided evenly between ham and
spam. From there, a small script removed the metadata from each message and then scanned
them for relevant textual features. This produced a series of continuous values for each instance,
with each value corresponding to a specific feature, along with appropriate class labels. It should
be noted that these feature values are later discretized by the classifiers themselves, as it was
found that each approach saw more benefit as compared to using the continuous inputs directly.

The original set of features considered for this project was taken directly from the
Spambase data set description available through the University of California Irvine Machine
Learning Repository [9]. This set consists of 57 features whose values correspond to percentages
of matches to specific strings (words, individual characters, and sequences of capital letters) that
may be present in a given text [9]. However, since the original Spambase data set is over ten
years old, we found that the features given in the provided description did not properly represent
ham and spam instances to the point where they could be reliably distinguished from one
another. As such, the matching strings which are used to derive the feature values have been
modified through an iterative process meant to ensure that a reasonably up-to-date feature set
would be used during classification.

To determine which matching strings to keep from the original feature set described by
Spambase, we used forward selection over all three classifiers to find all matching string features
which produced accurate results when taken collectively. This greatly reduced the size of the
feature set, and so to find additional good matching string features, we looked at the most
frequent strings occurring in the ham and spam messages in a training subset of our original data
set. From there, we used backward elimination over our classifiers to weed out unimportant
features as necessary. We repeated this process until we obtained roughly as many features as
there were in the original Spambase data set. In all, there are 62 features in the final data set used
for this project.

From this new feature set description, we reprocessed the individual e-mails comprising
our original data set and output their corresponding feature values and class labels into a file in
the ARFF format, which the classifiers can then read. This forms the basis for the subsequent
evaluation of these classifiers.

3. Evaluation

After we had finished implementing the three classifiers chosen for this project and
preparing the data set as described above, we began an extensive comparison of each classifier
given our spam classification task. Going into the evaluation phase, we looked back at our
questions regarding how performance might be affected by the class of model (discriminative or
generative) and form of the learnable decision boundary (linear or non-linear) for each classifier
and made a few predictions as to what we expected each of these factors to accomplish in our
evaluation. Our primary motivation for the project was brought about by the relative ubiquity
enjoyed by the naïve Bayes approach in classifying spam online, and so we assumed that this
may be due to an inherent advantage that generative models may have in performing this task. As

Seaholm 4

well, we reasoned that a non-linear classifier would presumably do as well at handling linearly
separable instances as a linear classifier since it is in general a more expressive learner. As such,
we sought to verify the following hypotheses:

1. The naïve Bayes classifier, using a generative model, will on average outperform the
discriminative classifiers in terms of accuracy given the spam classification tasks used in these
experiments.

2. The multilayer neural network, capable of learning a non-linear decision boundary, will
on average outperform the logistic regressor and its linear decision boundary in terms of
accuracy given the same spam classification tasks.

As we will show, certain aspects of our hypotheses were sound, both in general and under
specific conditions, and some were not. Details toward this end will become more apparent once
we have described the evaluation phase in sufficient detail.

For the initial experiment, each classifier was run over the thousand-instance data set
previously described, for which half of the instances were ham and the other half spam. This
experiment sought to judge each classifier over the thousand instances using stratified k-fold
cross validation with k set to 10 as a means of ensuring a more robust estimation of overall
accuracy. The choice of learning rate and number of training epochs for the multilayer neural
network and logistic regressor, as well as the number of bins used by each individual classifier
when discretizing the continuous feature values given in the data set, were selected empirically
to maximize per-classifier accuracy over this data set while keeping running time under a minute
for each trial. The resulting accuracy of each classifier over ten trials is given in Figure 1.

Figure 1. Per-trial accuracy using 10-fold cross validation for each system over the data set.

0 2 4 6 8 10 12
84

86

88

90

92

94

96

98

10-Fold Accuracy vs. Trial Number

Naïve Bayes
Neural Netw ork
Logistic Regession

Trial Number

10
-F

ol
d

Ac
cu

ra
cy

 (%
)

Seaholm 5

Table 1 shows the mean and standard deviation of the accuracy taken from the above
graph. As can be seen, for this experiment the multilayer neural network and logistic regression
approaches perform at almost the same level in terms of overall accuracy, but the latter classifier
is slightly more variant in terms of its results. More notably, we see that the naïve Bayes
classifier, though most able to consistently label the instances at a given level of accuracy, turned
out to be less accurate over the ten trials as compared to the other two classifiers.

Naïve Bayes Neural Network Logistic Regression
Mean 89.32% 94.82% 94.81%

Standard Deviation 0.187% 0.358% 0.384%

Table 1. Mean and standard deviation for overall accuracy for each classifier.

As another means of comparison, we provide the following receiver operating
characteristic (ROC) curves for each of the above classifiers. Notice that these results parallel the
accuracy plot from before, assuming equal misclassification costs for positive and negative
instances. The full set of ROC curves is given in Figure 2 while a zoomed-in section of the plot
is given in Figure 3.

Figure 2. ROC curves showing true and false positive rates for each classifier.

Figure 3, which shows the upper-left quarter of the plot from Figure 2, is perhaps the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True Positive Rate vs. False Positive Rate (ROC)

Naïve Bayes
Neural Netw ork
Logistic
Regression

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Seaholm 6

more informative graphic. Here it can be seen that the multilayer neural network and logistic
regression approaches are fairly comparable in terms of accuracy-related metrics. Interestingly, it
would seem that if we imposed differential misclassification costs such that, say, a false positive
was less desirable than a false negative, then in either direction the multilayer neural network
approach may perform marginally better than the logistic regressor given these curves.

Figure 3. A zoomed-in section of the previous ROC curve.

The previous experiment sought to produce a comparison between the classifiers on a
spam data set for which the instances were more or less evenly distributed in terms of message
timestamp. In reality, ham and spam messages are delivered consistently over time, but the
contents of spam messages in particular can vary considerably over different time frames. This is
due in part to the current widespread use of adaptive spam filters, as spammers attempt to change
the contents of their messages in order to circumvent such automated mechanisms. As such, we
devised another experiment in which classifiers were trained over a portion of the data set for
which the timestamps of the messages were from earlier in the year and subsequently tested over
instances from later in the year. This was done to determine how well each classifier is able to
account for adaptations in spam content over time.

For this second experiment, we divided the original data set in half, separating instances
by timestamp and broadly placing them into 'early' and 'late' divisions. From the 'early' division,
we took the 400 earliest instances, evenly split between ham and spam, and thereby formed the
training set for this experiment. The test set was created by taking the latest 100 instances from
the 'late' division and ensuring that the ham to spam ratio was again even within the set. This
particular 80/20 split was chosen in order to ensure that sufficient data would be used during

0 0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

1

True Positive Rate vs. False Positive Rate (ROC)

Naïve Bayes
Neural Netw ork
Logistic
Regression

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Seaholm 7

training while maintaining a wide enough separation of timestamps to guarantee that the
messages from the test set differed in content to a satisfactory degree as compared to the
messages in the training set.

Using this training and test set, we evaluated each classifier's performance as before, with
the learning rate, number of training epochs, and number of discrete bins selected empirically for
optimal accuracy while maintaining a one minute running time restriction. Figure 4 gives the test
set accuracy for each classifier over ten trials, and aggregate statistics are given in Table 2.

Figure 4. Accuracy over the 'late' test set for each classifier trained on the 'early' training
set over ten trials.

Naïve Bayes Neural Network Logistic Regression
Mean 82.0% 77.8% 80.0%

Standard Deviation 0.0% 1.32% 0.0%

Table 2. Mean and standard deviation for overall 'late' test set accuracy for each classifier.

This plot shows an appreciable decrease in accuracy as compared to the first experiment,
which is consistent with what we would expect as there should be a detectable difference
between the spam in the training set versus the test set given the time gap that we had imposed
between the two sets. Interestingly, the naïve Bayes classifier appears to be consistently more
accurate than its discriminative counterparts, which is in line with our original hypothesis. Both
the naïve Bayes and logistic regression classifiers gave the same results across all trials while the

0 2 4 6 8 10 12
73

74

75

76

77

78

79

80

81

82

83

Test Set Accuracy (%) vs. Trial Number

Naïve Bayes
Neural Netw ork
Logistic Regession

Trial Number

Te
st

 S
et

 A
cc

ur
ac

y
(%

)

Seaholm 8

multilayer neural network had more variation in its output. This is likely due to the high density
of random weights involved in the initialization of the network at the start of each trial.

4. Discussion

The results from these experiments offered some interesting contrast to our initial
hypotheses. From the first experiment, it would seem that both discriminative approaches, the
multilayer neural network and the logistical regressor, outperformed the naïve Bayes method
when considering spam classification over a set of instances without taking into account
timestamp order. In retrospect, it makes sense for the logistic regressor to have done better in this
experiment compared to the naïve Bayes classifier given that this was a larger training set; given
valid modeling assumptions on the part of the naïve Bayes approach, both classifiers should be
equally accurate given enough training examples since they are of the same functional form.
Since the features for this data set rely on the content of written messages, it is likely that the
conditional independence assumptions that naïve Bayes relies on (i.e., its modeling assumptions)
were not valid, resulting in the difference in performance between the generative and the
discriminative classifiers that we see here.

While the first experiment generally invalidated our first hypothesis' prediction that the
naïve Bayes classifier would have the best performance, it did offer some support for the
rationale behind our second hypothesis. Although the multilayer neural network did not
outperform the logistic regressor in this experiment as we had anticipated, our reasoning that the
neural network, a non-linear classifier, would do at least as well at handling linearly separable
instances as the logistic regressor, a linear classifier, appears to be sound. It should be noted,
however, that owing to the neural network's additional topological complexity coupled with the
generally longer running time of the backpropagation algorithm, it performs much more slowly
than the linear regression classifier over a fixed number of training epochs.

The second experiment seemed to lend credence to our first hypothesis, though in a more
specific context than we had anticipated. Compared to the two discriminative approaches, naïve
Bayes performed better and was generally more consistent in its results when accounting for
separation of data by timestamp. However, given the relatively narrow difference between the
results for the naïve Bayes classifier and those for the multilayer neural network and logistic
regressor, it is difficult to discern whether or not this is significant. It could be the case that the
naïve Bayes paradigm is able to model the feature space in a way that is more flexible than a
discriminative model and thus responds better to the spam adaptations experienced here, or
perhaps it is simply more resistant to overfitting based on the training data as compared to the
other approaches. Without additional data toward this end, it is difficult to tell for certain.

With regards to our experimental procedure, probably the aspect which prevented us from
generating more confident results was a lack of diverse data. Although we were able to garner a
thousand instances from the author's workplace inbox, in order to make better comparisons
between time spans as we did in the second experiment, we would need more messages fitting
into the 'early' and 'late' divisions to produce more robust results. As well, since much of our
parameter setting for each of the classifiers was based on manual tuning, it would be much better
from an experimental standpoint to have been able to find the optimal settings computationally,
although for the purposes of this project such a thing would likely be out of scope.

From the results of this project, we see a number of interesting possibilities in terms of
improvements and expansions to the original design. First and foremost would be to investigate

Seaholm 9

the adaptive capabilities of each classifier given spam over time, as we did in the second
experiment, but with a larger sample of data and with a more diverse selection of time slices; for
example, instead of simply separating instances by their timestamps being 'early' or 'late', one
could do a month-by-month comparison. Another possibility might be to take into consideration
the importance of preventing false positives versus false negatives in a real-world application; in
practice, the misclassification cost of having a spam message end up in one's inbox is much
smaller than that of having a legitimate message delivered to one's junk folder.

More broadly, it might be worthwhile to look into more sophisticated means of
engineering features and see if, for example, providing an encoding of features that moves the
decision boundary to a non-linear space would provide for a more robust representation of the
data set. Toward this end, it would be straightforward to use this new feature set to evaluate
multilayer neural networks of increasing complexity, with the expectation that one could
outperform the classifiers from this project due to its ability to separate instances more accurately
based on this advanced feature set. Since the multilayer neural network used in this project had
only one hidden layer, it would also be interesting to see how different topologies for these
proposed networks would fare at the task. Of course, this depends largely on the form of the
features being considered during classification.

5. Conclusion

For this project, we designed and implemented three classifiers, one each for the naïve
Bayes, logistic regression, and multilayer neural network approaches, and evaluated each on a
spam classification task. In our first experiment, we looked at how each classifier performed over
a data set of a thousand instances using 10-fold cross validation over ten trials. We found that
both the logistic regressor and the multilayer neural network, both discriminative learners, did
consistently better than the naïve Bayes classifier, which went against our initial expectations.
The second experiment carried out for this project involved comparing each classifier with
regards to how well they were able to classify newer ham and spam messages after having
trained on older messages. The results showed a marginal advantage to the naïve Bayes classifier
as compared to the other two classifiers. This project can be seen as a preliminary step toward
further investigations into the relative efficacy of spam classifiers from these different
paradigms, as such aspects of this project as the feature set and the manner of dividing instances
by time are good candidates for expanded study.

6. References

[1] Phys.org, "107 trillion emails sent last year: Pingdom." Phys.org, 2011.
http://phys.org/news/2011-01-trillion-emails-year-pingdom.html.

[2] Apache Software Foundation, "The Apache SpamAssassin Project." Apache Software
Foundation, 2011. http://spamassassin.apache.org/

[3] A. Ng and M. Jordan, "On Discriminative vs. Generative classifiers: A comparison of
logistic regression and naive Bayes." NIPS, 14 (2001), p. 605–610.

[4] D. Rumelhart, G. Hinton, and R. Williams. "Learning Internal Representations by Error
Propagation." Parallel Distributed Processing, 1 (1987), p. 318-362.

[5] N. Friedman, D. Geiger, and M. Goldszmidt. "Bayesian Network Classifiers." Machine
Learning, 29 (1997), p. 131-163.

Seaholm 10

[6] T. Mitchell. "Generative and Discriminative Classifiers: Naive Bayes and Logistic
Regression," in Machine Learning, 2nd ed. McGraw Hill, 2010. Available:
www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf.

[7] StackExchange, "How to choose the number of hidden layers and nodes in a feedforward
neural network?" StackExchange, 2010.
http://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-
layers-and-nodes-in-a-feedforward-neural-netw

[8] A. Blum. Neural Networks in C++. NY: Wiley, 1992.
[9] M. Hopkins, et al. "Spambase Data Set." UCI Machine Learning Repository, Irvine, CA:

University of California, School of Information and Computer Science, 1999. Available:
http://archive.ics.uci.edu/ml/datasets/Spambase.

