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A Comparison of Learning Methods for Spam Classification

Abstract: Given its adaptive and pervasive nature, spam is often classified by means of 
machine learning techniques, which have the ability to finely discern the difference between 
spam and legitimate messages in an automated fashion. Popular applications for spam 
classification typically incorporate some sort of Bayesian mechanism in order to classify spam; 
however, there is no reason to think that other classification methods cannot be used for the same 
purpose. For this project we implemented three spam classifiers following different learning 
approaches and evaluated them with regards to a sample spam classification task. We then 
discuss our interpretation of the results with regards to the decision boundary and learning model 
involved with each classifier as well as how each classifier holds up against adaptations in spam 
over time.

1. Introduction

Anyone with an e-mail address is probably well aware of the presence of junk e-mail, or 
spam, and its impact on Internet users everywhere. Over 90 trillion spam e-mails are thought to 
have circulated in 2010 [1], and the figures for the years to come are unlikely to be any less 
staggering. However, most end-users do not have to deal firsthand with the majority of this spam 
owing to the intervention of filtering programs which separate spam from legitimate mail, also 
called ham. Such spam filters or classifiers are integral to keeping users' e-mail accounts from 
becoming overburdened with spam, thereby preventing spam from becoming an active 
impediment to general e-mail access as opposed to a comparatively minor nuisance.

Many spam classifiers use Bayesian statistics in order to make inferences regarding the 
class of incoming e-mails. In particular, the program SpamAssassin, which is maintained by 
Apache Software Foundation and sees widespread public and private use, includes a naïve Bayes 
classifier at its core which adapts with incoming spam over time [2]. Although naïve Bayes 
approaches are especially prevalent as an option for spam filtering, it is reasonable to think that 
other machine learning techniques could be applied to the task of spam classification. Toward 
that end, we implemented three spam classifiers - one each for the naïve Bayes, logistic 
regression, and multilayer neural network paradigms - and made an evaluative comparison 
between each given the task of classifying spam from a selected data set.

The rationale behind this particular choice of classifiers is as follows. Because of its 
general utility in performing this task, naïve Bayes is a natural choice for one of the classifiers, 
as it serves as a baseline by which the other classifiers can be evaluated. The selection of logistic 
regression as one of the implementations stems from the equivalence in functional form shared 
between this approach and naïve Bayes [3]; more specifically, it allows for a direct comparison 
between generative and discriminative learning models as applied to the spam classification task. 
It should be noted that both of these approaches separate instances using a linear decision 
boundary in the feature space [3]. This is why a multilayer neural network was also implemented 
for this task, as its ability to learn non-linear boundaries [4] may provide insight into the problem 
of classifying spam.

Going into this project, we sought to address a few questions motivated by our choice of 
classifiers and the task of spam classification. First, how does performance in spam classification 
vary between discriminative and generative approaches? Similarly, how is performance affected 
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by the form of the decision boundary in the feature space - linear or non-linear - that the 
classifier is able to learn? The extent to which performance is influenced by each of these factors 
is explored more fully during the evaluation phase of the project, in which we consider not only 
basic differences in accuracy over the sample data set but also a measure of how well each 
classifier adapts to more recent ham and spam messages after having trained on older instances.

2. Approach
2.1. The Classifiers

As stated previously, this project dealt with the implementation of three spam classifiers: 
a naïve Bayes network, a logistic regressor, and a multilayer neural network. Each was 
implemented in such a way as to ensure that no one classifier had an a priori advantage over the 
others during the evaluation phase; that is, the basic principles for each approach were used in 
building each classifier while avoiding any classifier-specific optimizations which might 
significantly increase accuracy over the chosen data set. Certain design decisions were made on a 
per-classifier basis during the implementation phase, which are enumerated in the description for 
each classifier below.

The naïve Bayes classifier consists of a naïve Bayes network in which the primary parent 
node represents the class label for a given instance and whose child nodes represent the relevant 
features. The network is trained by using inference by enumeration over a training set and the 
resulting probability estimates are smoothed using Laplacian pseudocounts [5]. Instances from 
the test set are subsequently classified by finding the probability of the class label given the 
features using Bayes' rule to make the computation feasible [5]. This follows from the standard 
form of a naïve Bayes classifier, and for our purposes no further additions were required.

In contrast to the naïve Bayes network, the logistic regression classifier takes the form of 
a series of input units connected by weighted edges to a sigmoid output, in essentially the same 
layout as a perceptron. The weights for the logistic regressor are trained by means of gradient 
ascent to maximize the sum of log probabilities for the class label given the features [6]. In this 
implementation, the regressor uses stochastic gradient ascent in order to promote faster 
convergence, which was not deemed to affect accuracy unfairly but rather increase efficiency to 
facilitate testing. Output from the regressor is calculated by taking the sigmoid function applied 
to the sum of products of weights and input values for each instance [6]. This constitutes the 
logistic regression classifier that was created for this project, serving as the discriminative 
counterpart to naïve Bayes.

The multilayer neural network classifier is similar in form to the logistic regressor 
previously described, although more complex in operation. An additional layer of hidden units 
was put between the input and output units which would normally be present in a simple 
perceptron. Each input unit is fully connected to the units in this intermediate hidden layer, and 
each hidden unit points to a single sigmoid output. The number of hidden units selected for this 
task is roughly half of the sum of the number of input and output units, as per the 
recommendation of various sources [7] [8]. Training for this network involves updating the 
weights between the various units using backpropagation, and more specifically with stochastic 
gradient descent to minimize the sum squared error of the network output [4]. In contrast to the 
other two classifiers, this neural network is capable of learning a non-linear decision boundary, 
which may have a noticeable impact during evaluation.
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2.2. The Data Set

Because the data set used in the evaluation phase was essentially "home grown", much of 
the initial effort for this project was centered around retrieving the necessary data and converting 
it into a useful format for use by the classifiers. The original data set consisted of one thousand e-
mails from the author's workplace inbox, chosen randomly and divided evenly between ham and 
spam. From there, a small script removed the metadata from each message and then scanned 
them for relevant textual features. This produced a series of continuous values for each instance, 
with each value corresponding to a specific feature, along with appropriate class labels. It should 
be noted that these feature values are later discretized by the classifiers themselves, as it was 
found that each approach saw more benefit as compared to using the continuous inputs directly.

The original set of features considered for this project was taken directly from the 
Spambase data set description available through the University of California Irvine Machine 
Learning Repository [9]. This set consists of 57 features whose values correspond to percentages 
of matches to specific strings (words, individual characters, and sequences of capital letters) that 
may be present in a given text [9]. However, since the original Spambase data set is over ten 
years old, we found that the features given in the provided description did not properly represent 
ham and spam instances to the point where they could be reliably distinguished from one 
another. As such, the matching strings which are used to derive the feature values have been 
modified through an iterative process meant to ensure that a reasonably up-to-date feature set 
would be used during classification.

To determine which matching strings to keep from the original feature set described by 
Spambase, we used forward selection over all three classifiers to find all matching string features 
which produced accurate results when taken collectively. This greatly reduced the size of the 
feature set, and so to find additional good matching string features, we looked at the most 
frequent strings occurring in the ham and spam messages in a training subset of our original data 
set. From there, we used backward elimination over our classifiers to weed out unimportant 
features as necessary. We repeated this process until we obtained roughly as many features as 
there were in the original Spambase data set. In all, there are 62 features in the final data set used 
for this project.

From this new feature set description, we reprocessed the individual e-mails comprising 
our original data set and output their corresponding feature values and class labels into a file in 
the ARFF format, which the classifiers can then read. This forms the basis for the subsequent 
evaluation of these classifiers.

3. Evaluation

After we had finished implementing the three classifiers chosen for this project and 
preparing the data set as described above, we began an extensive comparison of each classifier 
given our spam classification task. Going into the evaluation phase, we looked back at our 
questions regarding how performance might be affected by the class of model (discriminative or 
generative) and form of the learnable decision boundary (linear or non-linear) for each classifier 
and made a few predictions as to what we expected each of these factors to accomplish in our 
evaluation. Our primary motivation for the project was brought about by the relative ubiquity 
enjoyed by the naïve Bayes approach in classifying spam online, and so we assumed that this 
may be due to an inherent advantage that generative models may have in performing this task. As 
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well, we reasoned that a non-linear classifier would presumably do as well at handling linearly 
separable instances as a linear classifier since it is in general a more expressive learner. As such, 
we sought to verify the following hypotheses:

1. The naïve Bayes classifier, using a generative model, will on average outperform the 
discriminative classifiers in terms of accuracy given the spam classification tasks used in these 
experiments.

2. The multilayer neural network, capable of learning a non-linear decision boundary, will 
on average outperform the logistic regressor and its linear decision boundary in terms of 
accuracy given the same spam classification tasks.

As we will show, certain aspects of our hypotheses were sound, both in general and under 
specific conditions, and some were not. Details toward this end will become more apparent once 
we have described the evaluation phase in sufficient detail.

For the initial experiment, each classifier was run over the thousand-instance data set 
previously described, for which half of the instances were ham and the other half spam. This 
experiment sought to judge each classifier over the thousand instances using stratified k-fold 
cross validation with k set to 10 as a means of ensuring a more robust estimation of overall 
accuracy. The choice of learning rate and number of training epochs for the multilayer neural 
network and logistic regressor, as well as the number of bins used by each individual classifier 
when discretizing the continuous feature values given in the data set, were selected empirically 
to maximize per-classifier accuracy over this data set while keeping running time under a minute 
for each trial. The resulting accuracy of each classifier over ten trials is given in Figure 1.

Figure 1. Per-trial accuracy using 10-fold cross validation for each system over the data set.
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Table 1 shows the mean and standard deviation of the accuracy taken from the above 
graph. As can be seen, for this experiment the multilayer neural network and logistic regression 
approaches perform at almost the same level in terms of overall accuracy, but the latter classifier 
is slightly more variant in terms of its results. More notably, we see that the naïve Bayes 
classifier, though most able to consistently label the instances at a given level of accuracy, turned 
out to be less accurate over the ten trials as compared to the other two classifiers.

Naïve Bayes Neural Network Logistic Regression
Mean 89.32% 94.82% 94.81%

Standard Deviation 0.187% 0.358% 0.384%

Table 1. Mean and standard deviation for overall accuracy for each classifier.

As another means of comparison, we provide the following receiver operating 
characteristic (ROC) curves for each of the above classifiers. Notice that these results parallel the 
accuracy plot from before, assuming equal misclassification costs for positive and negative 
instances. The full set of ROC curves is given in Figure 2 while a zoomed-in section of the plot 
is given in Figure 3.

Figure 2. ROC curves showing true and false positive rates for each classifier.
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more informative graphic. Here it can be seen that the multilayer neural network and logistic 
regression approaches are fairly comparable in terms of accuracy-related metrics. Interestingly, it 
would seem that if we imposed differential misclassification costs such that, say, a false positive 
was less desirable than a false negative, then in either direction the multilayer neural network 
approach may perform marginally better than the logistic regressor given these curves.

Figure 3. A zoomed-in section of the previous ROC curve.

The previous experiment sought to produce a comparison between the classifiers on a 
spam data set for which the instances were more or less evenly distributed in terms of message 
timestamp. In reality, ham and spam messages are delivered consistently over time, but the 
contents of spam messages in particular can vary considerably over different time frames. This is 
due in part to the current widespread use of adaptive spam filters, as spammers attempt to change 
the contents of their messages in order to circumvent such automated mechanisms. As such, we 
devised another experiment in which classifiers were trained over a portion of the data set for 
which the timestamps of the messages were from earlier in the year and subsequently tested over 
instances from later in the year. This was done to determine how well each classifier is able to 
account for adaptations in spam content over time.

For this second experiment, we divided the original data set in half, separating instances 
by timestamp and broadly placing them into 'early' and 'late' divisions. From the 'early' division, 
we took the 400 earliest instances, evenly split between ham and spam, and thereby formed the 
training set for this experiment. The test set was created by taking the latest 100 instances from 
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training while maintaining a wide enough separation of timestamps to guarantee that the 
messages from the test set differed in content to a satisfactory degree as compared to the 
messages in the training set.

Using this training and test set, we evaluated each classifier's performance as before, with 
the learning rate, number of training epochs, and number of discrete bins selected empirically for 
optimal accuracy while maintaining a one minute running time restriction. Figure 4 gives the test 
set accuracy for each classifier over ten trials, and aggregate statistics are given in Table 2.

Figure 4. Accuracy over the 'late' test set for each classifier trained on the 'early' training 
set over ten trials.

Naïve Bayes Neural Network Logistic Regression
Mean 82.0% 77.8% 80.0%

Standard Deviation 0.0% 1.32% 0.0%

Table 2. Mean and standard deviation for overall 'late' test set accuracy for each classifier.
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multilayer neural network had more variation in its output. This is likely due to the high density 
of random weights involved in the initialization of the network at the start of each trial.

4. Discussion

The results from these experiments offered some interesting contrast to our initial 
hypotheses. From the first experiment, it would seem that both discriminative approaches, the 
multilayer neural network and the logistical regressor, outperformed the naïve Bayes method 
when considering spam classification over a set of instances without taking into account 
timestamp order. In retrospect, it makes sense for the logistic regressor to have done better in this 
experiment compared to the naïve Bayes classifier given that this was a larger training set; given 
valid modeling assumptions on the part of the naïve Bayes approach, both classifiers should be 
equally accurate given enough training examples since they are of the same functional form. 
Since the features for this data set rely on the content of written messages, it is likely that the 
conditional independence assumptions that naïve Bayes relies on (i.e., its modeling assumptions) 
were not valid, resulting in the difference in performance between the generative and the 
discriminative classifiers that we see here.

While the first experiment generally invalidated our first hypothesis' prediction that the 
naïve Bayes classifier would have the best performance, it did offer some support for the 
rationale behind our second hypothesis. Although the multilayer neural network did not 
outperform the logistic regressor in this experiment as we had anticipated, our reasoning that the 
neural network, a non-linear classifier, would do at least as well at handling linearly separable 
instances as the logistic regressor, a linear classifier, appears to be sound. It should be noted, 
however, that owing to the neural network's additional topological complexity coupled with the 
generally longer running time of the backpropagation algorithm, it performs much more slowly 
than the linear regression classifier over a fixed number of training epochs.

The second experiment seemed to lend credence to our first hypothesis, though in a more 
specific context than we had anticipated. Compared to the two discriminative approaches, naïve 
Bayes performed better and was generally more consistent in its results when accounting for 
separation of data by timestamp. However, given the relatively narrow difference between the 
results for the naïve Bayes classifier and those for the multilayer neural network and logistic 
regressor, it is difficult to discern whether or not this is significant. It could be the case that the 
naïve Bayes paradigm is able to model the feature space in a way that is more flexible than a 
discriminative model and thus responds better to the spam adaptations experienced here, or 
perhaps it is simply more resistant to overfitting based on the training data as compared to the 
other approaches. Without additional data toward this end, it is difficult to tell for certain.

With regards to our experimental procedure, probably the aspect which prevented us from 
generating more confident results was a lack of diverse data. Although we were able to garner a 
thousand instances from the author's workplace inbox, in order to make better comparisons 
between time spans as we did in the second experiment, we would need more messages fitting 
into the 'early' and 'late' divisions to produce more robust results. As well, since much of our 
parameter setting for each of the classifiers was based on manual tuning, it would be much better 
from an experimental standpoint to have been able to find the optimal settings computationally, 
although for the purposes of this project such a thing would likely be out of scope.

From the results of this project, we see a number of interesting possibilities in terms of 
improvements and expansions to the original design. First and foremost would be to investigate 
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the adaptive capabilities of each classifier given spam over time, as we did in the second 
experiment, but with a larger sample of data and with a more diverse selection of time slices; for 
example, instead of simply separating instances by their timestamps being 'early' or 'late', one 
could do a month-by-month comparison. Another possibility might be to take into consideration 
the importance of preventing false positives versus false negatives in a real-world application; in 
practice, the misclassification cost of having a spam message end up in one's inbox is much 
smaller than that of having a legitimate message delivered to one's junk folder.

More broadly, it might be worthwhile to look into more sophisticated means of 
engineering features and see if, for example, providing an encoding of features that moves the 
decision boundary to a non-linear space would provide for a more robust representation of the 
data set. Toward this end, it would be straightforward to use this new feature set to evaluate 
multilayer neural networks of increasing complexity, with the expectation that one could 
outperform the classifiers from this project due to its ability to separate instances more accurately 
based on this advanced feature set. Since the multilayer neural network used in this project had 
only one hidden layer, it would also be interesting to see how different topologies for these 
proposed networks would fare at the task. Of course, this depends largely on the form of the 
features being considered during classification.

5. Conclusion

For this project, we designed and implemented three classifiers, one each for the naïve 
Bayes, logistic regression, and multilayer neural network approaches, and evaluated each on a 
spam classification task. In our first experiment, we looked at how each classifier performed over 
a data set of a thousand instances using 10-fold cross validation over ten trials. We found that 
both the logistic regressor and the multilayer neural network, both discriminative learners, did 
consistently better than the naïve Bayes classifier, which went against our initial expectations. 
The second experiment carried out for this project involved comparing each classifier with 
regards to how well they were able to classify newer ham and spam messages after having 
trained on older messages. The results showed a marginal advantage to the naïve Bayes classifier 
as compared to the other two classifiers. This project can be seen as a preliminary step toward 
further investigations into the relative efficacy of spam classifiers from these different 
paradigms, as such aspects of this project as the feature set and the manner of dividing instances 
by time are good candidates for expanded study.
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