
Efficient Foreground Segmentation Using Adaptive Clusters

Michael Seaholm
University of Wisconsin, Madison

seaholm@wisc.edu

Emma Turetsky
University of Wisconsin, Madison

eturetsky@wisc.edu

Abstract

For this project, we implemented an algorithm origi-
nally detailed by Bulter et al. [1] in order to produce a
system which can perform background-foreground segmen-
tation with reasonable accuracy in close to real-time. The
clustering algorithm described previously acts to provide
historical information on a per-pixel basis, allowing for an
adaptive background model. By measuring the difference
between incoming video frames and this model as outlined
by the algorithm, our system is able to classify pixels in
the frame as either background or foreground. Besides this,
post-processing was applied to the image mask calculated
by our system to account for false positives and negatives,
with varying degrees of success. Our results show a clearly
separated foreground image that is largely free of defects,
with a few notable exceptions. Although the nature of the
system is robust in many respects to changes in the scene,
avenues for improvement are myriad and could be the sub-
ject of further investigation.

1. Introduction
The problem of automatically dividing an image up into

background and foreground regions as applied to static im-
ages is fairly straightforward and has been covered exten-
sively in the relevant literature, but when dealing with a live
video sequence the task becomes more complicated. This is
due primarily to two factors: the presence of motion in the
background and the necessity of having these systems run
accurately in real time.

Although many such systems use a stereo camera setup
in order to capture depth information for the purposes of
background-foreground segmentation, others, such as the
one created by Butler et al. [1], are designed to use only one
camera. Such systems typically use aspects of the video,
such as color and motion, to determine the relative positions
of each layer. For this project we expanded on the work of
Butler and others to produce a system that segments live
video into background and foreground layers quickly and
with reasonable rates of accuracy using only one camera.

Figure 1. A frame of segmentation using the naive approach.

As this algorithm classifies each pixel independentally, it
allows for parallelization during the classification process.

2. Naive Apporach

As an initial exercise in working with these resources,
we started with a nave implementation of background-
foreground segmentation. By taking a known image of the
background, we can compare this model with frames of the
incoming video and classify those pixels which differ sig-
nificantly (i.e., exceeding a user-defined threshold) as the
foreground. This approach suffers from a number of issues,
chiefly that it is very sensitive to changes in luminance in
the scene and to any motion which may occur in the scene.
This implementation was used as a stepping stone to attain
the actual purpose of our project and serves as an object of
basic comparison with our results (see Figure 1).

3. Algorithm

We implemented the algorith described in [1]. The core
idea behind the algorithm that our system has implemented
is to model each pixel in the frame with a group of clusters,
each member of which contains a weight, w and centroids
Y , U , and V corresponding to components of the YUV
color space. As incoming pixels are matched to a cluster

1



within its group, a history of the pixel’s likelihood of being
in the foreground is effectively being accrued and adapted
based on past and future pixels. This approach proves to be
robust to both changes in luminance and, in the long term,
to background motion.

When the system is first run, it initializes all the clus-
ter groups for each pixel in the canonical frame. As video
frames are captured from the camera, each incoming pixel,
p, and its corresponding cluster group, CG, is processed as
follows:

First, the algorithm looks at each of the clusters in the
group, sorted from highest to lowest weight, and finds the
best match for the incoming pixel. The quality of the match
is determined by looking at the difference between the YUV
centroids in a given cluster and the corresponding values for
the pixel. If each of these distances are below a specified
threshold, then the cluster is considered a match. It should
be noted that in our implementation, a separate threshold for
each of the YUV components is established to allow greater
control over matches made by the algorithm.

If a match is found, then the centroids of the matching
cluster are adapted toward the incoming pixel by an amount
specified by the learning rate, L. Similarly, the weights of
all clusters in the group are adapted in accordance with this
learning rate. These adaptations are given by the following
equations. For the matching cluster group:

CG.Y = CG.Y +
p.Y − CG.Y

L

CG.U = CG.U +
p.U − CG.U

L

CG.V = CG.V +
p.V − CG.V

L

CG.w = CG.w +
1− CG.w

L

For the non-matching clusters:

CG.w = CG.w − CG.w

L

If no match could be found, then the lowest weighted
cluster is replaced by a new cluster whose centroids are set
to the YUV values of the pixel and with an initial weight of
0.01. This effectively allows lower-weight clusters to expire
as new and different pixel information comes in from the
scene.

After the matching and adaptation stages have occurred,
the weights of the clusters are normalized to ensure con-
sistency between cluster groups and to facilitate the later
classification stage. It should be noted that normalization
need only occur when cluster replacement occurs during the
matching stage, since the sum of weights across clusters re-
mains 1 even after adaptation. Accounting for this helps to
increase our implementation’s overall efficiency.

During the classification stage, the clusters are sorted
from highest to lowest weight and the algorithm computes
the sum of weights for all clusters that are heavier than the
one that matched the incoming pixel. Given that the weights
have been normalized previously, this sum acts as a proxy
for the probability that the given pixel is in the foreground.
As such, by establishing a probability threshold, we can cre-
ate a binary mask which reflects the classifications for each
of these pixels. Our system takes this mask, applies it to the
input frame, and outputs the resultant image, which contains
the foreground region from the original and a blacked-out
background region.

3.1. Post Processing

After the creation of the mask, our system performs
additional post-processing steps to ensure the accuracy of
the computed foreground region. As the problem can be
viewed as a matter of binary classification, the process de-
scribed above suffers primarily from two types of errors:
background pixels incorrectly classified as foreground pix-
els and vice-versa. For the most part, the issue of false pos-
itives comes about due to noise in the capture device which
causes occasional pixels to rise above one or more of the
YUV thresholds across clusters in the group, which is in-
terpreted as being in the foreground as a result. To remedy
this, our system performs a morphological open operation
on the foreground mask, which has the effect of eliminat-
ing small pockets of false positives which may occur in the
background.

Although this approach produces a much smoother fore-
ground mask, it is not without its limitations. Regions of
false positives which are larger than several pixels in size
and are not isolated from other foreground regions are re-
duced, but not eliminated, by this operation. This is most
evident in the presence of shadows from foreground objects
in the scene, as they produce a larger change in luminance
where they are cast than is typically accounted for by reg-
ular fluctuations in lighting. Empirically, however, we’ve
found that careful adjustment of the luminance threshold
reduces the classification of shadows as foreground suffi-
ciently for normal purposes.

False negatives, meanwhile, occur primarily in regions
in which there is almost no difference between the fore-
ground pixels and the adapted background model across all
three YUV components. In most environments in which
such systems would be used, matches tend to occur along
the extended edges of foreground objects. We chose to ad-
dress the problem of false negatives by performing a mor-
phological open operation on the bitwise inversion of the
foreground mask, which has the property of smoothing the
affected regions and resolving the bulk of the issue.

Sometimes, however, the result of the algorithm contains
connected background regions, or holes, within the fore-



Figure 2. Two frames showing correct foreground/background
segmentation of the images.

ground mask due to due to across-the-board similarity be-
tween background and foreground pixels. While the Butler
paper indicates the use of a connected components-based
algorithm to correct for such instances, our experimental
results indicated few circumstances in which such holes
would occur which would not be corrected over time. As
such, our implementation differs in that regard.

4. Evaluation
4.1. Implementation

We implemented our system in C++ using the OpenCV
computer vision libraries and used a Logitech C110 web-
cam for video capture. The performance evaluation is on a
maching running 64-bit Redhat 6 Linux with an Intel Core
2 Quad Processor running at 2.66 Ghz with 8GB of RAM.
Our code is located at http://pages.cs.wisc.edu/
˜seaholm/CS766/project.html

4.2. Results

The output of our system is represented by the series of
still frames in Figure 2

Each frame is 640 x 480 pixel resolution taken from the
video output stream that our system produces. The back-
ground portion of these frames is blacked out as per our

implementation to accentuate the foreground regions and to
facilitate finding false positives and negatives as they occur.
It should be noted that these frames were taken after first
letting the algorithm run with no foreground objects in the
scene so as to provide an initial stable background model.
Although the system is capable of adapting to changes in
the background regardless of initial state, this was done to
avoid having to wait for the weights to shift appropriately
due to adaptation.

Originally, the system ran slowly owing to the
computationally-intensive nature of the algorithm; prelim-
inary results indicated that on average processing for each
frame took about 340 ms, which translates to about 3 frames
per second. We strove to improve the running time by sim-
plifying certain aspects of the algorithm. As mentioned in
the original paper by Butler et al., the normalization stage
does not need to be performed every iteration as we had
done previously; since the adaptation function for the clus-
ter weights did not change the sum of weights in the clus-
ter group, normalization need only occur when no clus-
ter match could be found and a new cluster with a pre-
set weight was created. As well, by writing certain sim-
ple but frequently-referenced operations as preprocessor
macros and setting optimization flags for the compiler and
implementing parallelization, we saw a significant increase
in performance. The present iteration of the system takes
about 45 ms to process a frame, or about 22 frames per sec-
ond, which is roughly real-time.

4.3. Parallel Optimization

We also implemented a version of the algorithm that split
the workload of the foreground classification into four sep-
arate threads. This gave us a speedup of 25% during that
portion and one of 18% overall. Further experiments with 8
and 16 threads showed no appreciable difference.

4.4. Discussion

The results that we have seen from our system illustrate
both the accuracy and robustness of the underlying cluster-
based algorithm. The foreground is clearly separated from
the background and appears to be accurate to a high degree;
speckling phenomena from false positives in particular have
been smoothed out surprisingly well by the morphological
open, producing a background region that is largely con-
tiguous. The same operation as applied to false negatives
is successful, although not to the same degree; small holes
do still occur within the foreground image and along sharp
edges that may be mistaken as the background due to reflec-
tion and other visual similarities.

Perhaps the most important aspect of the algorithm is its
ability to adapt its model of the background over time, as is
reflected in Figure 3. Objects in the scene which cause very
little in the way of pixel change (e.g., motionless or very

http://pages.cs.wisc.edu/~seaholm/CS766/project.html
http://pages.cs.wisc.edu/~seaholm/CS766/project.html


Figure 3. A frame showing the model adapting and classifying a
still object as the background.

Figure 4. This figure shows errors in determining the edges of the
foreground hand.

slow moving objects) eventually become incorporated in the
background model, the rapidity of which being contingent
upon the learning rate specified by the user. This allows
for more accurate segmentation of the foreground from the
background, especially in the long term.

Of course, our implementation is not without its imper-
fections. As mentioned previously, certain extreme lumi-
nance differences, such as shadows, tend to be interpreted as
foreground regions unless the luminance threshold is care-
fully tuned. Even then, small shadows may persist unless
lighting parameters within the environment are strictly con-
trolled, which is an undesirable constraint. Finding a way
to identify shadows in the scene and classifying them as
being part of the background is chief among the features
which should be implemented in future iterations of the im-
plementation.

Besides the issue of shadows being classified as false
positives, the issue of false negatives in the form of holes in
the foreground region and choppiness around certain edges
of the foreground objects, such as in Figure 4, still persist.
For the former issue, the connected-components approach

mentioned previously would likely handle it better than we
do at present. As for the latter, it may be that a later imple-
mentation could check the edges of foreground objects and
smooth them to reduce the choppy effect, but since the is-
sue comes about due to a similarity between the background
and the foreground, it is difficult to say whether or not the
edges in those regions could be reliably discerned.

5. Conclusion
The foreground segmentation system that we imple-

mented, based on the algorithm developed by Butler et al.,
uses an adaptive clustering technique to build a historical
record of the pixels in a given scene, which provides a
background model which slowly changes over time to ac-
count for changes in the environment. This proves to be
robust to changes in luminance and motion and, for the
most part, properly captures the foreground region from the
background. As we have previously detailed, the system
is not error-proof, as false positives and false negatives are
bound to occur owing to their being inherent to the problem
of background-foreground segmentation. We have taken
steps to minimize and, in some cases, eliminate instances
of these errors, and toward this end different additional ap-
proaches could be applied to produce even more accurate
results. With regards to system performance, the move to
parallelization provided a significant boost in terms of the
frame rate, and so further investigations along these lines
might also prove beneficial in future research. Given our
results, it is clear that the system which we have produced
lends itself to modification to provide for these possible im-
provements.

References
[1] D. E. Butler, V. M. Bove, Jr., and S. Sridharan. Real-time

adaptive foreground/background segmentation. EURASIP J.
Appl. Signal Process., 2005:2292–2304, Jan. 2005. 1


	1 . Introduction
	2 . Naive Apporach
	3 . Algorithm
	3.1 . Post Processing

	4 . Evaluation
	4.1 . Implementation
	4.2 . Results
	4.3 . Parallel Optimization
	4.4 . Discussion

	5 . Conclusion

